

Bring Minerals to Life

Trial Report by JH Biotech, Inc. Animal Nutrition Division

Purpose

Buffermin Copper and Zinc Proteintae

 To compare performance of traditional inorganic minerals versus chelated minerals.

 To understand the quality and efficacy of JHB's Buffermin Proteinate products.

Method

Buffermin Copper and Zinc Proteintae

- Animal: Ross 308 broiler
- Count: 400 heads \rightarrow 5 groups
- Location: National Chung Hsing University, Taiwan
- Groups:
 - Control: CuSO₄ + ZnSO₄
 - JCu: Buffermin Cu Proteinate + ZnSO4
 - CCu: Competitor Cu Proteinate + ZnSO4
 - JZn: CuSO₄ + Buffermin Zn Proteinate
 - CZn: CuSO₄ + Competitor Zn Proteinate

Materials

Buffermin Copper and Zinc Proteintae

- Inorganic Minerals:
 - Copper sulfate pentahydrate
 - Zinc sulfate monohydrate
- Organic Minerals:
 - Buffermin Copper Proteinate 15%
 - Buffermin Zinc Proteinate 15%
 - Competitor Copper Proteinate 10%
 - Competitor Zinc Proteinate 12%
- All minerals were added in the ratio to yield the same mineral content in complete feed in each group

Diet

ltom	Grower	Finisher
item	1-21 day old	22-35 day old
Ingredients (%)		
Corn	47.25	51.84
Soybean meal, CP 44%	34.53	29.57
Full fat soybean meal	10.00	10.00
Limestone, pulverized	1.61	1.34
Monocalcium phosphate	1.86	1.66
Salt	0.39	0.38
Soybean oil	3.51	4.49
Lysin	0.20	0.13
Methionine	0.38	0.32
Choline chloride, 50%	0.96	0.96
Vitamin premix ¹	0.10	0.10
Mineral premix ²	0.10	0.10
Calculated value (%)		
Dry matter	88.39	88.41
Crude protein	23.00	21.00
Crude fat	7.25	8.28
ME, Kcal/kg	3050	3175
Ca	1.05	0.90
Na	0.17	0.17
Available phosphate	0.50	0.45

(premix content per kg diet) Ingredients Amount Vit. A 15000 IU Vit. D3 3000 IU Vit. E 30 mg Vit. K₃ 4 mg Thiamin 3 mg Riboflavin 8 mg Pyridoxine 5 mg Vit. B12 25 µg **Ca-pantothenate** 19 mg Niacin 50 mg Folic acid 1.5 mg **Biotin** 6oµg

Vitamin Premix Mineral Premix (premix content per kg diet)

Ingredients	Amount
CoCO3	0.255 mg
FeSO4· H2O	90 mg
MnSO4·H2O	90 mg
Na2SeO3	0.18 mg

JB

Copper and Zinc

Cu and Zn Source and Dosage of Each Group

Groups	Mineral Sources		Copper Dosage (mg/kg, ppm)	Zinc Dosage (mg/kg, ppm)	Equivalent Copper Content (mg/kg, ppm)	Equivalent Zinc Content (mg/kg, ppm)
Control	CuSO4·5H2O	ZnSO4·1H2O	90	83	22.5	30
JCu	Buffermin [®] Copper Proteinate	ZnSO4·1H2O	150	83	22.5	30
Сси	Competitor Copper Proteinate	ZnSO4·1H2O	225	83	22.5	30
JZn	CuSO4·5H2O	Buffermin [®] Zinc Proteinate	90	200	22.5	30
ZZn	CuSO4·5H2O	Competitor Zinc Proteinate	90	250	22.5	30

Results

Body Weight and FCR

lterre	Groups					
item	Control	JCu	CCu	JZn	CZn	
o-21 age in days	—g/chicken—					
Body weight	912 ^b	948 ^a	936 ^{ab}	935 ^{ab}	925 ^{ab}	
Feed consumption	1092	1079	1069	1102	1101	
Weight gain	869	905	893	893	882	
FCR	1.26 ^a	1.19 ^b	1.20 ^b	1.23 ^a	1.25 ^a	
21-35 age in days						
Body weight	2294	2302	2299	2312	2254	
Feed consumption	2117	2109	2143	2065	2059	
Weight gain	1382	1354	1363	1377	1329	
FCR	1.54	1.56	1.57	1.50	1.55	
o-35 age in days						
Feed consumption	3210	3188	3212	3167	3160	
Weight gain	2252	2259	2256	2269	2210	
FCR	1.43	1.41	1.42	1.40	1.43	

- 1. Substitution of inorganic copper with Buffermin Copper Proteinate significantly improved body weight and FCR at 21 days of age compared with control and competitor's chelated copper .
- 2. Although not statistically significant, JHB's products perform better than Competitor's products in either group at all growing phases.

Results

Cu Sources vs Blood Parameters

ltem	Groups			
35 age in days	Control	JCu	CCu	
CHOL, mg/dL	87.25	86.75	91.5	
Cu in blood (ug/L)	125	117.5	113.75	

- 1. Bakalli et al. (1995) reported that high copper intake (250 mg/kg) can significantly reduce total cholesterol content in blood. Later reports demonstrated normal copper intake may not have significant impact on cholesterol level.
- 2. In this study, no significant effect was found on copper content in blood and total cholesterol level across all groups. It is concluded that normal copper intake level will not affect cholesterol level.

Bakalli, R. I., G. M. Pesti, W. L. Ragland, and V. Konjufca, 1995. Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens. Poultry Sci. 74:360-365.

Results

Zn Sources vs Tibia and Blood Parameters

ltem	Groups			
35 age in days	Control	JZn	CZn	
Tibia weight (g)	7.08	7.54	7.31	
Tibia length (cm)	9.96	10.07	9.96	
Weight/length	0.71	0.75	0.73	
ltem		Groups		
35 age in days	Control	JZn	CZn	
Zn in blood (ug/L)	1313	1438	1358	

- 1. Substitution of inorganic zinc with chelated zinc significantly improved tibia weight and has no significant effects on tibia length.
- Groups treated with JHB's Buffermin Zinc Proteinate showed the highest tibia weight and zinc content in blood while maintaining normal tibia length. It is expected that this group will show highest bone density and tibia strength.
- 3. Zinc is part of the essential elements for bone development. From the results above, Buffermin Zinc Proteinate showed the highest bioavailability and utilization rate.

Conclusions

Buffermin Copper and Zinc Proteintae

- Buffermin Copper Proteinate significantly increases weight gain and improves FCR on early growing stage (0-21 days)
- Buffermin Zinc Proteinate drastically improves tibia parameters with higher zinc in blood showing higher bioavailability and utilization rate
- Conclusion: Buffermin Copper and Zinc Proteinate have better product performance over inorganic and competitor's copper source

Labels

Buffermin Copper and Zinc Proteinates

Amino Acids Chelated Copper

Product Information

BUFFERMIN COPPER PROTEINATE results from the chelation of copper with amino acids and/ or partially hydrolyzed proteins as defined by the Association of American Feed Control Officials. It is a nutritional animal feed supplement formulated to prevent and/or correct copper deficiency in animals.

GUARANTEED ANALYSIS

Crude Protein, not less than 25.0% Copper (Cu), not less than. 15.0%

INGREDIENTS: hydrolyzed protein and copper proteinate

KEEP OUT OF REACH OF CHILDREN

Directions and General Recommendations

FEEDING INSTRUCTIONS

Recommended rates per ton of complete feed: Cattle (Dairy, Beef): 1g/head/day Sow: 120 - 150g Poultry: 150g Horses: 1g/head/day

CAUTION: Product contains copper. Do not feed to sheep or related species.

STORAGE BUFFERMIN COPPER PROTEINATE is stable under normal storage conditions. Store in dry, cool places. Avoid exposure to moisture, heat, and direct sunlight

NET CONTENTS: 25 lb. (11.3 kg) Manufacturing Date: Expiration Date: Lot #:

LIMITED WARRANTY Manufacturer or seller makes no warrant product other than for the purposes indic. for any injury or damage caused by this p specifically described on the label

MANUFACTURED BY: JH BIOTECH, INC. JHB JHBíotech, Inc. P.O. Box 3538, Ventura, CA 93006 U.S.A 805-650-8933 jhbiotech.com

BUFFERMIN® ZINC PROTEINATE Amino Acids Chelated Zinc

Product Information

BUFFERMIN ZINC PROTEINATE results from the chelation of zinc with amino acids and/or partially hydrolyzed proteins as defined by the Association of American Feed Control Officials. It is a nutritional animal feed supplement formulated to prevent and/or correct zinc deficiency in animals.

GUARANTEED ANALYSIS

Crude Protein, not less than. 25.0% Zinc (Zn), not less than. .15.0%

INGREDIENTS: hydrolyzed protein and zinc proteinate

KEEP OUT OF REACH OF CHILDREN

Directions and General Recommendations

FEEDING INSTRUCTIONS

Recommended rates per metric ton of complete feed: _____

Cattle (Dairy, Beef):	80 - 1
Swine (Sow – before pregnancy):	330g
(Sow – after pregnancy):	450 -
(Piglets):	450 -
(Growers/Finishing):	200g
(Late Hog):	200
Poultry:	65 –
All-Species Average:	65 –

80 – 240g	
330g	
450 – 650g	
450 – 600g	
200g	
200 – 330g	
65 – 200g	
65 – 200g	

STORAGE

LIMITED WARRANTY

Manufacturer or seller makes no warrant

product other than for the purposes indic for any injury or damage caused by this r

BUFFERMIN ZINC PROTEINATE is stable under normal storage conditions. Store in dry, cool places. Avoid exposure to moisture, heat, and direct sunlight.

NET CONTENTS: 25 lb. (11.3 kg) Manufacturing Date: Expiration Date: Lot #:

specifically described on the label. Information regarding the contents and le www.aapfco.org/metals.html MANUFACTURED BY: JH BIOTECH, INC.

JB JHBrotech.Inc. P.O. Box 3538, Ventura, CA 93006 U.S.A 805-650-8933 ihbiotech.com

JB

Thank You